Sialic acid-dependent interaction of group B streptococci with influenza virus-infected cells reveals a novel adherence and invasion mechanism.
نویسندگان
چکیده
Group B streptococci (GBS) contain a capsular polysaccharide with side chains terminating in α2,3-linked sialic acids. Because of this linkage type, the sialic acids of GBS are recognised by lectins of immune cells. This interaction results in a dampening of the host immune response and thus promotes immune evasion. As several influenza A viruses (IAV) use α2,3-linked sialic acid as a receptor determinant for binding to host cells, we analysed whether GBS and influenza viruses can interact with each other and how this interaction affects viral replication and bacterial adherence to and invasion of host cells. A co-sedimentation assay revealed that viruses with a preference for α2,3-linked sialic acids bind to GBS in a sialic acid-dependent manner. There is, however, a large variation in the efficiency of binding among avian influenza viruses of different subtypes as shown by a hemagglutination-inhibition assay. A delay in the growth curve of IAV indicated that GBS has an inhibitory effect on virus replication. On the other hand, both the adherence and invasion efficiency of GBS were enhanced when the cells were pre-infected by IAV with appropriate receptor specificity. Our results suggest that GBS infection may result in a more severe disease when patients are co-infected by influenza viruses. This co-infection mechanism may have relevance also to other human diseases, as there are more bacterial pathogens with α2,3-linked sialic acids and human viruses binding to this linkage type.
منابع مشابه
Interfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملInterfering With Lipid Raft Association: A Mechanism to Control Influenza Virus Infection By Sambucus Nigra
Sambucus nigra (elder) are broadly used species to treat microbial infections. Thepotential antiviral activity and mechanism action of elder fruit (EF) in human epithelium cell(A549) cultures infected with H9N2 influenza virus were determined. The effect of variousconcentrations of EF on influenza virus replication was examined by using virus titration,quantitative real time RT-PCR, fusion and ...
متن کاملFibrinogen-mediated adherence of group A Streptococcus to influenza A virus-infected cell cultures.
A quantitative radioassay was used to study the adherence of group A Streptococcus to Madin-Darby canine kidney cells infected with influenza A virus (strains FM1, Jap 305, and NWS) and reacted with fibrinogen. Treatment of virus-infected cell cultures with human fibrinogen significantly enhanced streptococcal adherence (P less than 0.0005) compared with adherence to untreated, virus-infected c...
متن کاملNeutrophils do not bind to or phagocytize human immune complexes formed with influenza virus.
Neutrophils appear to form the first line of defense against influenza virus, yet it is unclear how these leukocytes recognize influenza-infected cells. While demonstrating that neutrophils adhere specifically to the sialic acid-binding site on the hemagglutinin molecule (HA) on the surface of influenza-infected (WSN[H1N1]) epithelial cells and not to other viral or epithelial cell antigens, it...
متن کاملGroup A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors.
The first step in the colonization of group A streptococci (Streptococcus pyogenes) is adherence to pharyngeal epithelial cells. Prior to adherence to their target tissue, the first barrier that the streptococci encounter is the mucous layer of the respiratory tract. The present study was undertaken to characterize the interaction between mucin, the major glycoprotein component of mucus, and st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular microbiology
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2018